Subject Code : PCEE-525

Title of the course : Electrical Machines – II Laboratory

L	T	P	Credits	Weekly Load				
0	0	2	1	2				

Course Outcomes:

After successful completion of course, the students should be able to

- **CO 1:** interpret the basics of Induction machine, rotating field, torque etc.
- **CO 2:** know the construction, operation and characteristics of poly-phase induction machine.
- **CO 3:** simulate the steady-state and transient state performance of synchronous machines to identify performance measures.
- **CO 4:** analyse the operation, use and characteristics of induction generator.
- **CO 5:** select the appropriate AC motor for different large power application

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
	Program Outcomes (POs)/Program Special Outcome (PSO's)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	3	3	3	2	2	2	1	2	1	2	2	2	3	2
CO2	3	3	3	2	3	2	1	2	1	2	2	2	2	1
CO3	3	3	2	3	3	3	2	2	1	3	3	2	2	1
CO4	3	3	2	2	2	S	2	1	2	3	3	1	3	3
CO5	3	3	3	2	2	2	1	2	1	2	2	2	3	2

To understand the practicability of **Electrical Machines**, the list of experiments is given below to be performed (at least 10) in the laboratory.

- 1. To perform no-load and blocked-rotor tests on three-phase Induction motor to obtain equivalent circuit. Parameters and to draw circle diagram.
- 2. To perform load-test on three-phase Induction motor and to plot torque versus speed characteristics.
- 3. To study star- delta starters physically and a) to draw electrical connection diagram b) to start the three-phase Induction motor using it. c) to reverse the direction of three-phase Induction motor.
- 4. To start a three-phase slip –ring induction motor by inserting different levels of resistance in the rotor circuit and to plot torque –speed characteristics.
- 5. To perform no-load and blocked—rotor test on single-phase Induction motor and to determine the parameters of equivalent circuit.
- 6. To perform load –test on single-phase. Induction motor and plot torque –speed characteristics.
- 7. To perform no load test on the alternator and draw open circuit characteristics (OCC).
- 8. To perform short circuit test on the alternator and draw short circuit characteristics (SCC).
- 9. To perform load test on the alternator and draw terminal voltage characteristics
- 10. To find voltage regulation of an alternator by zero power factor (ZPF.) method.
- 11. To draw "V" and inverted "V" curves of synchronous motor.
- 12. To measure negative sequence and zero sequence reactance of Synchronous Machines.
- 13. Parallel operation of three phase alternators using Dark lamp method Two-Bright and one dark lamp method.