

DEPTT. OF ELECTRICAL & INSTRUMENTATION ENGINEERING

DEPTT. OF ELECTRICAL & INSTRUMENTATION ENGINEERING

Annexure-B

Scheme of Honor Degree Program in Electrical Engineering

		Semester-V					
S. No.	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	HDEE-611	Modelling and control of Electrical Machines	3	1	0	4	4
2	HDEE-612	Micro-grid Systems	3	1	0	4	4
		Total	3	1	0	4	4
		Semester-VI					
S. No.	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	HDEE-621	Advanced Electrical Machines	3	1	0	4	4
		Total	3	1	0	4	4
C N	<u> </u>	Semester-VII	.	Т	D		0 14
S. No.		Subject Name	L	Т	Р	Hrs.	Credits
1	HDEE-711	Power System Operation and Control	3	1	0	4	4
		Total	3	1	0	4	4
		Semester-VIII		1		1	1
S. No.	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	PHEE-721	Project Honors	0	0	8	8	4
		Total	0	0	8	8	4

Dr. Rishabh Verma Dr. Gurmeet Singh Dr. Charanjiv Gupta Dr. M. S. Manna Prof. Manpreet Kaur Prof. A.S. Arora

Prof. Sanjay Marwaha Prof. J.S. Dhillon Dr. Chetan Vasudeva Er. Baljit Singh Prof. Mukesh Pathak Prof. Surita Maini

DEPTT. OF ELECTRICAL & INSTRUMENTATION ENGINEERING

Subject Code	:	HDEE-611
Title of the course	:	Modelling and control of Electrical Machines

L	Т	Р	Credits	Hrs
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to

CO 1: Describe the revolving field and reference frame theory

CO 2: Design mathematical model of three-phase AC machines and parameters in different reference frame

CO 3: Examine the transient performance of three-phase AC machines in different reference frames

CO 4: Design the modeling of AC machines

CO 5: Apply modern control techniques in electrical machines for different applications

Mapping COs/Bloom's Taxonomy Level (BLs)								
COs	CO1	CO2	CO3	CO4	CO5			
BLs	BL2	BL6	BL3	BL3	BL1, BL2			

	CO/PO Mapping : (Strong(S) / Medium(M) / Weak(W) indicates strength of correlation):											
COs		Programme Outcomes (POs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	2	3	-	-	-	3	2	1	2
CO2	2	3	2	2	2	-	-	-	3	2	2	2
CO3	2	-	2	3	2	-	1	-	3	2	2	2
CO4	2	2	3	2	3	1	-	-	3	2	3	2
CO5	3	3	3	2	3	1	-	-	3	2	3	2

Theory:

Unit	Main Topics and Course Outlines	Hour(s)					
Unit-1	Generalized transformations, Physical model, Different reference frame, Primitive machine, dynamic variable, Formulation of dynamic equations of a generalized machine in arbitrary reference frame	10					
	Analysis of induction machines, Space vector, induction motor modeling in arbitrary reference frame and in field oriented frame, Performance analysis						
	Analysis of synchronous machine, Modeling, Operational impedances, Time constants, torque expression, Asynchronous damping,	10					
Unit-2	Steady state and transient performance, Phasor diagram and power angle characteristics.	10					

Recommended Books-

- 1. Bimbhra, P.S., Generalized Theory of Electric Machines, Khanna Publishers (2006).
- 2. Kraus, P.C., Analysis of Electric Machine,
- 3. Bruzzese, Claudio. Theory of Electrical Machines. N.P., Società Editrice Esculapio, 2022.
- 4. Mukerji, Saurabh Kumar, et al. Electromagnetics for Electrical Machines. United Kingdom, Taylor & Francis Group, 2020.

Dr. Rishabh Verma Dr. Gurmeet Singh Dr. Charanjiv Gupta Dr. M. S. Manna Prof. Manpreet Kaur Prof. A.S. Arora Prof. Sanjay Marwaha Prof. J.S. Dhillon Dr. Chetan Vasudeva Er. Baljit Singh Prof. Mukesh Pathak Prof. Surita Maini

DEPTT. OF ELECTRICAL & INSTRUMENTATION ENGINEERING

Subject Code	:	HDEE-612
Title of the course	:	MICRO-GRID SYSTEMS

L	Т	Р	Credits	Hrs
3	1	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

- CO 1: Express the knowledge of Microgrid Technology, issues and standards
- CO 2: Describe about operational issues of Grid connection of DG systems
- CO 3: Explain the operation, control and modeling of Microgrids
- CO 4: **Describe** the reliability of Microgrid Technology
- CO 5: Examine issues and standards of DGs

Mapping COs/Bloom's Taxonomy Level (BLs)									
COs	CO1	CO2	CO3	CO4	CO5				
BLs	BL2, BL6	BL1. BL2	BL2, BL3, BL4	BL1. BL2	BL1				

	CO/PO Mapping : (Strong(S) / Medium(M) / Weak(W) indicates strength of correlation):												
COs	Programme Outcomes (POs)												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	-	1	-	-	-	1	2	-	-	2	
CO2	2	1	1	-	3	2	2	1	2	2	1	3	
CO3	-	3	2	3	2	2	2	1	3	2	1	3	
CO4	-	2	1	1	3	-	2	2	2	1	1	2	
CO5	-	2	1	1	2	-	3	1	2	2	1	2	

Theory:

Unit	Main Topics and Course Outlines	Hour(s)
	BASICS OF A MICROGRID: Concept and definition of microgrid, microgrid drivers and benefits, review of sources of microgrids, typical structure and configuration of a microgrid, microgrid systems, Power Electronics interfaces in microgrid systems.	8 hrs
Unit-1	OPERATIONAL FEATURES OF GRID CONNECTED DG SYTEMS: Grid interconnection issues for grid connected operation of various types of DG systems. Constraints on operational parameters: voltage, frequency, THD, response to grid abnormal operating conditions, islanding issues. Reliability, stability and power quality issues involved in grid connected operation of various DGs.	8 hrs
Unit-2	OPERATION, CONTROL AND MODELLING OF MICROGRID: Concept and definition of microgrid, review of sources of microgrids, typical structure and configuration of a microgrid, microgrid implementation in Indian and international scenario, AC and DC microgrids, Power Electronics interfaces in DC and AC microgrids, communication infrastructure, modes of operation and control of microgrid: grid connected and islanded mode operation, anti-islanding	8 hrs

Dr. Rishabh Verma Dr. Gurmeet Singh Dr. Charanjiv Gupta Dr. M. S. Manna Prof. Manpreet Kaur Prof. A.S. Arora

DEPTT. OF ELECTRICAL & INSTRUMENTATION ENGINEERING

schemes. Control techniques for voltage, frequency, active and reactive power control of microgrid system, Computer aided Modelling of microgrid.	
INTRODUCTION TO RELIABILITY AND MARKET ISSUES OF MICROGRID: Power quality issue, THD reduction techniques, protection and stability analysis of microgrid, regulatory standards, introduction to microgrid reliability. Features of microgrid economy and market. LVDC Microgrid.	8 hrs
INTERCONNECTION ISSUES AND STANDARDS OF DGs : Concept of distributed generations (DG) or distributed energy resources (DERs), topologies, selection of source, dependence on storage facilities, regulatory standards/ framework, standards for interconnecting DGs to electric power systems: IEEE 1547. DG installation classes, security issues in DG implementations. Grid code and Islanding & non-islanding system.	8 hrs

Recommended Books: -

Dr. Rishabh Verma

Dr. Gurmeet Singh

1. Renewable Energy- Power for a sustainable future, third edition, Edited by Godfrey Boyle, Oxford University Press, 2013.

2. Amirnaser Yezdani, and Reza Iravani, "Voltage Source Converters in Power Systems: Modeling, Control and Applications", IEEE John Wiley Publications, 2009.

3. Dorin Neacsu, "Power Switching Converters: Medium and High Power", CRC Press, Taylor & Francis, 2006. New Delhi.

4. Microgrids: Architectures and Control, Nikos Hatziargyriou (Editor), ISBN: 978-1-118- 72068-4, 340 pages, December 2013, Wiley-IEEE Press

5. Microgrids and Active Distribution Networks, S. Chowdhury, S.P. Chowdhury and P. Crossley, The Institution of Engineering and Technology, London, U.K, 2009.

6. Technical literatures- research papers published in power system and power electronics related reputed journals and IEEE standards.

7.Salkuti, Surender Reddy, and Ray, Papia. Next Generation Smart Grids. Singapore, Springer Singapore Pte. Limited, 2022.

8. Belu, Radian. Smart Grid Fundamentals: Energy Generation, Transmission, and Distribution. United States, CRC Press, 2022.

Dr. M. S. Manna

Prof. Manpreet Kaur

Dr. Charanjiv Gupta

Prof. A.S. Arora

Prof. Sanjay Marwaha Prof. J.S. Dhillon Dr. Chetan Vasudeva Er. Baljit Singh Prof. Mukesh Pathak Prof. Surita Maini

DEPTT. OF ELECTRICAL & INSTRUMENTATION ENGINEERING

Subject Code	:	HDEE-621
Title of the course	:	ADVANCED ELECTRICAL MACHINES

L	Т	Р	Credits	Hrs		
3	1	0	3	3		

Course Outcomes:

After successful completion of course, the students should be able to

- CO 1: Study about DC Permanent magnet machines
- CO 2: Learn about the BLDC
- CO 3: Explain permanent magnet AC machines
- CO 4: Identify stepping electric machines
- CO 5: Explain high speed and high power density motors

Mapping COs/Bloom's Taxonomy Level (BLs)									
COs	CO1	CO2	CO3	CO4	CO5				
BLs	BL2	BL1. BL2	BL2, BL3,	BL2	BL2, BL3,				
			BL4		BL4				

	CO/PO Mapping : (Strong(1) / Medium(2) / Weak(3) indicates strength of correlation):												
		Programme Outcomes (POs)											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	
CO1	1	1	1	1	1	-	-	-	2	2	-	1	
CO2	1	1	1	-	1	1	-	-	2	1	1	1	
CO3	1	2	1	2	1	2	2	-	2	2	2	2	
CO4	1	2	2	2	-	2	-	-	2	2	2	2	
CO5	1	2	2	2	1	2	2	-	2	2	2	2	

Theory:

Unit	Main Topics and Course Outlines	Hour(s)								
	Permanent Magnet d.c. Commutator Motors.									
	Permanent magnet versus electromagnetic excitation, Construction : Slotted-rotor									
	PM d.c. motors, Slotless-rotor PM motors Fundamental equations: Terminal voltage,									
	Armature winding EMF, Electromagnetic torque, Electromagnetic power, Input and									
	output power, Losses, Pole pitch, Air gap magnetic flux density, Armature winding									
	resistance, Armature winding inductance; Sizing procedure, Armature reaction,									
Unit-1	Commutation, Starting, Speed control, Servo motors, Applications.									
	D.C. Brushless Motors									
	Fundamental equations: Terminal voltage, Instantaneous current , EMF,									
	Electromagnetic torque of a PM brushless d.c. motor; Concentrated-coil armature									
	winding , Commutation of PM brushless motors, Toque-speed characteristics,									
	Winding losses, Torque ripple: Sources, minimization of torque ripple, Universal									
	brushless motor electromechanical drives, Smart Motors, Applications									
	Permanent Magnet Radial Flux Synchronous Motors	10								
	Construction, Fundamental relationships: Speed, Air gap magnetic flux density,									
Unit-2	Voltage induced (FMF), Electromagnetic power, Synchronous reactance,									
	Subtransient synchronous reactance, Transient synchronous reactance,									
	Electromagnetic torque, Equivalent field MMF, Armature reaction reactance; Phasor									

Dr. Rishabh Verma Dr. Gurmeet Singh Dr. Charanjiv Gupta Dr. M. S. Manna Prof. Manpreet Kaur Prof. A.S. Arora

DEPTT. OF ELECTRICAL & INSTRUMENTATION ENGINEERING

diagram ,Characteristics, Starting methods, Rotor configurations comparison	
between synchronous and induction motors, Applications	
Axial Flux Motors	10
Force and torque, Performance, Double-sided motor with internal PM disk motor,	
Stator core Main dimensions, Double-sided motor with one stator, Single-sided	
motors, Ironless double-sided motors, Multidisk motors. Applications	
Stepping Motors	
Features of stepping motors, Fundamental equations: Step, Steady-state torque,	
Maximum synchronizing torque, Frequency of the rotor oscillations; PM stepping	
motors, Reluctance stepping motors, Hybrid stepping motors: Full stepping , Half	
stepping, Voltage equations and electromagnetic torque Characteristics: Torque-	
angle charactestics, Torque-current characteristics, Torque frequency characteristics;	
Applications.	

Recommended Books: -

- 1. E. G. Janardhanan, 'Special Electrical Machines' PHI Learning Private Limited
- 2. Irving L. Kosow.'Electrical Machinery and Transformers', Oxford Science Publications.
- 3. Veinott & Martin, 'Fractional & Subfractional hp Electric Motors'. McGraw Hill International Ed.

4. Handbook of Electric Motors. United Kingdom, CRC Press, 2018.

DEPTT. OF ELECTRICAL & INSTRUMENTATION ENGINEERING

Subject Code:HDEE-711Title of the course:POWER SYSTEM OPERATION AND CONTROL

L	Т	Р	Credits	Hrs
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to

- **CO 1: Describe** the economics of power system operation with thermal and hydro units.
- **CO 2: Determine** various methods of solution to solve the problem of economic dispatch with various constraints.
- **CO 3:** Categorize the hydroelectric plant models and their scheduling problems.
- CO 4: Distinguish the requirements and methods of real and reactive power control in power system.
- **CO 5:** Establish the control of generator units, like frequency control or voltage control and various controllers.

Mapping COs/Bloom's Taxonomy Level (BLs)									
COs	CO1	CO2	CO3	CO4	CO5				
BLs	BL1. BL2	BL3	BL4	BL4, BL5	BL3				

	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):													
COs		Program Outcomes (POs)/Program Special Outcome (PSO's)												
003	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1									PSO2			
CO1	3	2	1	1	1	3	2	1	2	2	1	3	1	1
CO2	3	2	2	1	1	3	3	1	3	3	3	2	2	2
CO3	3	2	2	1	2	2	3	1	3	3	3	2	3	2
CO4	3	2	2	1	2	3	3	1	3	3	2	1	3	1
CO5	3	3	3	1	2	2	3	1	3	3	3	2	3	1

Theory

Unit	Main Topics and Course Outlines	Hour(s)
	Deregulated Economic Operation of Power Systems: Economic operation of thermal	10
	units, hydro-thermal units under deregulated environment and environmental impacts, Fuel	
	consumption, Characteristics of thermal unit, Incremental fuel rate and their approximation,	
÷	minimum and maximum power generation limits.	
Unit-1	Economic Dispatch: Economic dispatch problem with and without transmission line	10
D	losses, Unit Commitment, their solution methods. Environmental aspects in Economic	
	dispatch.	
	Hydrothermal Co-ordination: Hydro- Scheduling, Plant models, scheduling problems,	
	Hydrothermal scheduling problems and its approach.	
	Power System Control: Power system control factors, interconnected operation, tie-line	12
	operations, Reactive power requirements, during peak and off peak hours, Elementary ideas	
	of load frequency and voltage, reactive power control; , block diagrams of P-f and Q-V	
lt-2	controllers, automatic load frequency control (ALFC), Static and Dynamic performance	
Unit-2	characteristics of ALFC and automatic voltage regulator (AVR) controllers, Excitation	
	systems.	
	Power System Security: Factors affecting security, Contingency analysis, Network	10
	sensitivity.	

Dr. Rishabh Verma Dr. Gurmeet Singh Dr. Charanjiv Gupta Dr. M. S. Manna Prof. Manpreet Kaur

Prof. A.S. Arora

DEPTT. OF ELECTRICAL & INSTRUMENTATION ENGINEERING

Recommended Books-

- 1. I.J. Nagrath and D.P. Kothari, Power System Engineering, 2nd Edition, Tata McGraw Hill, 2007.
- 2. O.L. Elgerd, Electric Energy Systems Theory: An Introduction, 2nd Edition, Tata McGraw Hill, 1983.
- 3. P. Kundur, Power System Stability & Control, Third Reprint, Tata McGraw Hill, 2007.
- 4. P.S.R. Murthy, Power System Operation and Control, Tata McGraw Hill, 1984.
- 5. W.D. Stevenson, JR. and John J. Grainger, Power System Analysis, McGraw Hill, 2007.
- 6. Springer Handbook of Power Systems. Germany, Springer Singapore, 2021.

Departmental BOS Committee Members:

1 Dr. Rishabh Verma 2. Dr. Mohan Kashyap 3. Dr. Manpreet Singh Manna

4 Dr. Charanjiv Gupta 5. Dr. Gurmeet Singh

Dr. Rishabh Verma Dr. Gurmeet Singh Dr. Charanjiv Gupta Dr. M. S. Manna Prof. Manpreet Kaur Prof. A.S. Arora Prof. Sanjay Marwaha Prof. J.S. Dhillon Dr. Chetan Vasudeva Er. Baljit Singh Prof. Mukesh Pathak Prof. Surita Maini